Audiological Status in Patients with Cleft Lip and Palate at Srinagarind Hospital

Panida Thanawirattananit MA*, Benjamas Prathanee PhD*, Sanguansak Thanaviratananich MD, MSc*

* Department of Otorhinolaryngology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand

Objective: To determine the audiological status in patients with cleft lip and palate.
Study design: A descriptive retrospective study.
Material and Method: Data were retrieved from hospital records of 234 patients with cleft lip and palate and cleft palate who underwent hearing assessment between June 2007 and September 2010 at Srinagarind Hospital, Khon Kaen University. Descriptive data of the audiological evaluation were presented.
Results: Unilateral or bilateral hearing loss at the first hearing assessment was encountered among 186 patients (79.49%). Among these, 165 (88.71%) had bilateral conductive hearing loss and 16 (8.6%) had unilateral conductive hearing loss. The degree of hearing loss was greatest to a moderate degree in 181 (50.84%) ears. Most tympanometric evaluations presented with type B (335 ears or 72.67%). The age of the patient was significantly correlated with audiological status.
Conclusion: The current study showed that there is a high prevalence of hearing impairment among patients with cleft lip and palate and cleft palate. Therefore, routine audiological assessment should be performed as early as possible, especially among children. Further prospective investigation of the prevalence of hearing loss in children with cleft lip and palate and cleft palate should be considered, and endorsed as a national healthcare policy priority in order to raise awareness and to prevent hearing loss among these children.

Keywords: Cleft lip and palate, Hearing loss

According to birth statistics from around the world, cleft lip and cleft palate are among the most common congenital abnormalities (range, 0.3/1,000-2.65/1,000)(1-6). Due to the incomplete closure of the lips and palate, difficulties arise with respect to: feeding, speech and language development, dentition, facial structures and therefore hearing.

Hearing impairment is one of the associated problems seen particularly in children with cleft lip and palate; over against cleft lip alone; the middle ear is the part of the ear usually affected in a child with cleft palate. In general, 100% of children with cleft lip and palate will suffer from at least one episode of otitis media/middle ear effusion by age 7(7). Additional studies of children with cleft lip and palate reported that the middle ear effusion was often sterile, suggesting that the middle ear disease was the result of insufficient middle ear ventilation(8-10). The lack of ventilation is the result of changes in the movement of the Eustachian tube caused by inadequate insertion of the palate tensor and elevator muscles; thereby producing a function obstruction in the Eustachian tube and negative pressure in the middle ear, leading to otitis media. Middle ear pathology thus leads to conductive hearing loss.

Although there is general agreement among authorities that there is a higher incidence of hearing loss among the cleft lip and palate population than the non-cleft population; the incidence of hearing loss varies widely-between 30% and 93%(10-14). Audiological problems in patients with cleft lip and/or palate may be influenced by a diverse range of factors; including sex, age and type of cleft disorder(15-21).

The purpose of the present study was to determine the audiological status in patients with cleft lip and/or palate at Srinagarind Hospital, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand. The effect of sex, age and cleft type on hearing status was also studied.
Material and Method

Study design
This was a descriptive study with retrospective data collection from the clinical charts of consecutive patients with cleft lip and/or palate who had undergone audiologic evaluation between June 2007 and September 2010 at Srinagarind Hospital, Faculty of Medicine, Khon Kaen University, Thailand.

Participants
Patients with cleft lip and/or palate who presented at Srinagarind Hospital under the “Smart Smile and Good Speech” project.

Inclusion criteria
Patients with cleft lip and palate or cleft palate.

Exclusion criteria
Patients with syndromic cleft lip and palate, isolated cleft lip, other major organ system defect or no data of hearing assessment.

In all the data of 384 patients with cleft lip and/or palate were collected but after the exclusion criteria were applied, 234 patients with cleft lip and/or palate remained in the study.

Patients were classified into three categories: Group I (isolated cleft palate), Group II (unilateral cleft lip and palate) and Group III (bilateral cleft lip and palate).

Study procedure
Patient charts were checked for data on patient identification (age, sex, type of cleft lip and palate) and the results of the first visit hearing assessment. The data were extracted and transferred to case record forms. Double entries and accuracy were checked. The hearing assessment was conducted by a certified audiologist at Srinagarind Hospital who routinely cares for patients with clefts.

Outcomes
The main outcomes of the present study were type and degree of hearing loss, percentage of hearing loss, and type of tympanogram.

Hearing assessments
Hearing assessments were conducted using standard behavioral audiometry, pure tone audiometry and low-frequency probe tone tympanometry. The frequencies for pure tone thresholds were 0.5, 1, 2 and 4 KHz. Using the pure tone average for 0.5, 1 and 2 KHz, the degree of loss was determined using the following categories: normal hearing (≤ 25 dBHL), mild hearing loss (26 to 40 dBHL), moderate hearing loss (41 to 55 dBHL), moderately severe hearing loss (56 to 70 dBHL), severe hearing loss (71 to 90 dBHL) and profound hearing loss (> 90 dBHL).

Hearing loss was identified as conductive, sensorineural or mixed. Behavioral audiometry including distraction testing and visual reinforcement audiometry were used in young children who could not be assessed using pure tone audiometry. ABR (Auditory-Brainstem Response testing) was also performed when behavioral measures were not sufficiently reliable to provide ear-specific estimates of the type, degree and configuration of hearing loss. Low frequency probe tone tympanometry was performed on all of the subjects to detect middle ear pathology. Tympanograms were described qualitatively by three types: type A found in the normal middle ear; type B found in those with middle ear effusion; and type C tympanogram found in those with negative middle ear pressure.

Statistical analysis
Descriptive statistics were used to analyze the prevalence of hearing disorders (i.e., percentage). The Chi-squared test was used to determine the association of hearing loss with sex, age and cleft type (p < 0.05).

Results
The demographic characteristics of the patients are presented in Table 1. There were 234 patients with cleft lip and/or palate investigated for hearing (range, 4 months to 33.8 years of age; mean 3.11 years; median 1.9 and mode 1.3 years).

On review of the data, 48 patients (20.51%) had normal hearing in both ears and 186 (79.49%) already had unilateral or bilateral hearing loss at their first hearing assessment. A total of 165 patients had bilateral conductive hearing loss. Sixteen patients had unilateral conductive hearing loss (Table 2). There was a greater prevalence of conductive hearing loss in all cleft patient groups.

There was no significant difference in the proportion of males vs. females vis-a-vis hearing loss (p > 0.05) (Table 3). The current study revealed a that the hearing loss of patients ≤ 3 years of age was significantly greater than patients > 3 years of age (p < 0.001). No significant difference among the three cleft type categories was found for proportion of hearing...
related to hearing status; again, this finding agrees
studies(15,17). In the current study, age was significantly
affect hearing status. This finding agrees with earlier
current study showed that gender did not significantly
affected hearing status (p > 0.05). Of 468 ears, 361 had hearing loss: a moderate
degree in 181 (50.84%) (Table 4). The lowest prevalence
was of profound hearing loss found in 1 patient (both
ears; 0.56%) with bilateral cleft lip and palate which
had resulted in bilateral mixed hearing loss. Two
patients had bilateral severe mixed hearing loss.

Type B tympanogram was found in 335 of the
461 ears (72.67%) while type A was found in 98 (21.26%),
and type C in 28 (6.07%). The tympanometry results of
7 ears in 4 patients were lost: (i) 1 patient had bilateral
ear drainage at the time of the test; (ii) 1 had tympanic
membrane perforation in one ear and type A
tympanogram in the other; and (iii & iv) the test was
lost for two. According to cleft types, the frequency of
type B tympanogram was highest and usually in persons
with unilateral cleft lip and palate group (n = 187 ears;
77.27%) (Table 5).

Discussion

The current study delineates the hearing
status of patients with cleft and/or palate treated at
Srinagarind Hospital. The report confirms earlier
reports that hearing impairment is strongly
associated with cleft lip and/or palate. Most other
researchers found that the percentage of patients with
cleft palate with hearing loss and middle ear problems
varies between 30% and 93% (10-14,24-26).

The findings of the current study, however, stand in sharp contrast with the study by Chu and
McPherson (15) who studied patients with all types of
clefts in Hong Kong and found that 20% of the study
group (13.4% of patient ears) had failed the hearing
screening. One of the main reasons for the discrepancy
could be the data collection from different age groups;
the authors collected data from children ≤ 3 years (n =
156, 66.67%) while Chu and McPherson collected the
data on children > 7 years (n = 153, 85%). Nearly 98% of
the patients in their study had repaired cleft palate prior
to the hearing screening. This would partly account
for the low prevalence of hearing problems found in
their study. Importantly, too, after 7 years of age,
morphological changes in the Eustachian tube occur,
leading to improved tubal function and, consequently,
 improved hearing status.

There is controversy over the relationship of
cleft lip and/or palate, age and hearing status. The
current study showed that gender did not significantly
affect hearing status. This finding agrees with earlier
studies. In the current study, age was significantly
related to hearing status; again, this finding agrees
with the earlier studies. By contrast, however,
other studies have found age did not affect hearing
status.

There was no evidence that cleft type had
any statistically significant affect on hearing problems:
this finding agrees with studies performed by
others (15,17,29). However, contrasting results have also
been noted; in which some patients with an isolated
palate had a higher incidence of hearing loss than those
with cleft lip and palate (25).

It is well established that the majority of
individuals with cleft palate that have a hearing loss
also have a bilateral conductive hearing loss. Unilateral
cleft lip and palate is more common than
bilateral cleft lip and palate and isolated cleft palate,
which co-relates with earlier reports (7,29,30). There is,
however, little agreement regarding the corresponding
severity of cleft associated hearing loss. The literature
dealing with this aspect of hearing loss in cleft palate is
sparse. The degree of hearing loss in the current study
ranged from mild conductive hearing loss to moderately
severe conductive hearing loss. This finding agrees with
previous research (16,17,31). Handziae-Cuk et al (16)
found that most types of clefts also resulted in moderate
to severe conductive hearing loss. Gould and Muniz
(17) reported that the hearing loss among young children
with non-syndromic cleft lip and palate is mainly
moderate. This severity of hearing loss can,
nevertheless, result in linguistic problems because
language learning is negatively affected. It has been
postulated that cognitive and academic performance
can also be affected because these areas are inseparably
related to the psycho-socio-linguistic domains.

Although most of those in the hearing loss
group in the current study had conductive hearing loss,
one patient with isolated cleft palate had bilateral
symmetrical moderate sensorineural hearing loss. His
first visit was at 4 years of age and there was not any
history on past illness. The probable cause of hearing
loss in this case could therefore be due to either genetic
or unknown factors. Bergstrom and Hemenway
(12) found that 26% of 58 children with submucous
cleft palate had sensorineural hearing loss (SNHL) and they
speculated that the SNHL in twelve cases could have
resulted from the diffusion of toxin products from an
infected middle ear into the inner ear. Two children in
their study (32) may have had hearing losses due to
genetic factors or unknown causes and one because
of exposure to loud noise.

Tympanometry is the test of eardrum
movement, middle ear pressure and Eustachian tube
Table 1 Demographic characteristics of patients with cleft lip and palate

<table>
<thead>
<tr>
<th>Subjects (n = 234)</th>
<th>No.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>113</td>
<td>48.29</td>
</tr>
<tr>
<td>Female</td>
<td>121</td>
<td>51.71</td>
</tr>
<tr>
<td>Age (Years)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 to 3</td>
<td>156</td>
<td>66.67</td>
</tr>
<tr>
<td>3 to 6</td>
<td>41</td>
<td>17.52</td>
</tr>
<tr>
<td>6 to 9</td>
<td>10</td>
<td>4.27</td>
</tr>
<tr>
<td>9 to 12</td>
<td>11</td>
<td>4.70</td>
</tr>
<tr>
<td>12 to 15</td>
<td>3</td>
<td>1.28</td>
</tr>
<tr>
<td>15 to 18</td>
<td>2</td>
<td>0.85</td>
</tr>
<tr>
<td>18 to 21</td>
<td>5</td>
<td>2.14</td>
</tr>
<tr>
<td>21 +</td>
<td>6</td>
<td>2.56</td>
</tr>
<tr>
<td>Type of cleft lip/palate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group I; isolated cleft palate</td>
<td>50</td>
<td>21.37</td>
</tr>
<tr>
<td>Group II; unilateral cleft lip and palate</td>
<td>121</td>
<td>51.71</td>
</tr>
<tr>
<td>Group III; bilateral cleft lip and palate</td>
<td>63</td>
<td>26.92</td>
</tr>
</tbody>
</table>

Table 2 Types of hearing loss among the different groups of cleft patients

<table>
<thead>
<tr>
<th>Cleft Type (No. of Patients)</th>
<th>Hearing Status</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Bilateral Normal</td>
</tr>
<tr>
<td>n = 234</td>
<td></td>
<td>No. %</td>
</tr>
<tr>
<td>Group I</td>
<td>16 32 31 62</td>
<td>1 2 1 2 1 2</td>
</tr>
<tr>
<td>Group II</td>
<td>18 14.88 93 76.86 10 8.26 0 0 0 0 121</td>
<td></td>
</tr>
<tr>
<td>Group III</td>
<td>14 22.22 41 65.08 5 7.94 3 4.76 0 0 63</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>48 20.51 165 70.51 16 6.84 4 1.71 1 0.43 234</td>
<td></td>
</tr>
</tbody>
</table>

Table 3 Effect of sex, age and cleft type on hearing status

<table>
<thead>
<tr>
<th>Subjects (n = 234)</th>
<th>No.</th>
<th>Hearing status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Normal hearing</td>
</tr>
<tr>
<td></td>
<td>No.</td>
<td>%</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>113</td>
<td>24</td>
</tr>
<tr>
<td>Female</td>
<td>121</td>
<td>24</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 3</td>
<td>156</td>
<td>16</td>
</tr>
<tr>
<td>> 3</td>
<td>78</td>
<td>32</td>
</tr>
<tr>
<td>Type of cleft lip and palate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group I</td>
<td>50</td>
<td>16</td>
</tr>
<tr>
<td>Group II</td>
<td>121</td>
<td>18</td>
</tr>
<tr>
<td>Group III</td>
<td>63</td>
<td>14</td>
</tr>
</tbody>
</table>
function. In the current study and two earlier studies\(^7,33\), more than half of the patients had type B tympanogram, indicative of middle ear effusion, which is more frequent in unilateral cleft lip and palate than in bilateral cleft lip and palate and isolated cleft palate. In the current study, type B tympanogram had the highest correlation with a conductive hearing loss except in the case of one 2.4 year-old female who had normal hearing with type B tympanogram in the affected ear. We explored the data and noted that the hearing sensitivity in that ear was poorer than the other but the range was within normal limits (< 25 dBHL). We concluded that she had some degree of hearing loss from her baseline, caused by middle ear pathology.

Type A tympanogram indicates normal middle ear function. In patients with cleft lip and/or palate with conductive hearing loss, type B tympanogram is not usually found, and yet in the current study the authors encountered 4 ears in 3 patients that were type B. In routine evaluations, low frequency probe tone tympanometry is used: this represents a limitation when assessing the middle ear status of young infants. In infants from birth to seven months of age, false tympanometric findings are possible in ears with a middle ear pathology. According to one study\(^27\), in such cases, type B tympanometric results-suggesting middle ear effusion-may be considered, but type A tympanometric results in young infants may be erroneous. Jacobson and Jacobson\(^34\) suggested that when type A tympanogram is found in young infants, it should be tested with high-frequency probe-tone tympanometry or wide-band reflectance-tympanometry, to confirm or refute the earlier test result.

Conclusion

The age of a patient has a significant relationship on audiological status. Most commonly found in the current study were (a) moderate conductive hearing loss and (b) type B tympanometric results, indicative of middle ear effusion. Most of our cases were ≤ 3 years of age; at this age, children begin to develop speech & language and communication skills at home. The authors encouraged parents to monitor their children’s hearing carefully and urged them to have their children checked by an audiologist experienced in the assessment of the patient’s with cleft lip and/or palate. Due to the high prevalence of hearing impairment in cleft lip and/or palate, routine audiological assessment is warranted. An overall hearing profile for children with cleft lip and/or palate

Table. 4 Degree of hearing loss with different groups of cleft patients

<table>
<thead>
<tr>
<th>Cleft Type</th>
<th>Degree of Hearing Loss</th>
<th>No.</th>
<th>%</th>
<th>No.</th>
<th>%</th>
<th>No.</th>
<th>%</th>
<th>No.</th>
<th>%</th>
<th>No.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mild</td>
<td></td>
<td></td>
<td>Moderate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Moderately severe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group I</td>
<td>26</td>
<td>38.81</td>
<td>34</td>
<td>50.75</td>
<td>5</td>
<td>7.46</td>
<td>2</td>
<td>2.98</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Group II</td>
<td>76</td>
<td>38.78</td>
<td>97</td>
<td>49.49</td>
<td>23</td>
<td>11.73</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Group III</td>
<td>28</td>
<td>30.11</td>
<td>50</td>
<td>53.76</td>
<td>11</td>
<td>11.83</td>
<td>2</td>
<td>2.15</td>
<td>2</td>
<td>2.15</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>130</td>
<td>36.52</td>
<td>181</td>
<td>50.84</td>
<td>39</td>
<td>10.96</td>
<td>4</td>
<td>1.12</td>
<td>2</td>
<td>0.56</td>
<td></td>
</tr>
</tbody>
</table>

Table. 5 Tympanometric findings among the different groups of cleft patients

<table>
<thead>
<tr>
<th>Cleft Type</th>
<th>Type of Tympanogram</th>
<th>No.</th>
<th>%</th>
<th>No.</th>
<th>%</th>
<th>No.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Type A</td>
<td></td>
<td></td>
<td>Type B</td>
<td></td>
<td></td>
<td>Type C</td>
</tr>
<tr>
<td></td>
<td>No.</td>
<td>%</td>
<td>No.</td>
<td>%</td>
<td>No.</td>
<td>%</td>
<td>No.</td>
</tr>
<tr>
<td>Group I (98)</td>
<td>26</td>
<td>26.53</td>
<td>64</td>
<td>65.31</td>
<td>8</td>
<td>8.16</td>
<td></td>
</tr>
<tr>
<td>Group II (242)</td>
<td>43</td>
<td>17.77</td>
<td>187</td>
<td>77.27</td>
<td>12</td>
<td>4.96</td>
<td></td>
</tr>
<tr>
<td>Group III (121)</td>
<td>29</td>
<td>23.97</td>
<td>84</td>
<td>69.42</td>
<td>8</td>
<td>6.61</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>98</td>
<td>21.26</td>
<td>335</td>
<td>72.67</td>
<td>28</td>
<td>6.07</td>
<td></td>
</tr>
</tbody>
</table>
should be conducted as early as possible in the longitudinal treatment plan. Further prospective investigations of the prevalence of hearing loss in children with cleft lip and/or palate should be considered, and endorsed in the national healthcare policy; to heighten awareness and to prevent hearing loss among affected children.

Acknowledgement
The authors wish to thank (a) the patients and their families for their participation (b) the Center for Cleft Lip Cleft Palate and Craniofacial Deformities, Khon Kaen University, in association with the Tawanchai Project for publication arrangements and (c) Mr. Bryan Roderick Hamman and Mrs. Janice Loewen-Hamman for assistance the English-language presentation of the manuscript.

Potential conflicts of interest
None.

References

ลักษณะทางการได้ยินของผู้ป่วยปากแหว่งแพะนิวิจัยในโรงพยาบาลศรีนครินทร์

พนิมา ธนาวิรัตนานิจ, เบญจมาศ พระธานี, สงวนศักดิ์ ธนาวิรัตนานิจ

วัตถุประสงค์: เพื่อศึกษาลักษณะทางการได้ยินของผู้ป่วยปากแหว่งแพะนิวิจัย

วิธีการ: เป็นการศึกษาแบบย้อนหลังเชิงพรรณนา นำข้อมูลจากแบบบันทึกการตรวจลูกป่วย ปากแหว่งแพะนิวิจัยในโรงพยาบาลจำนวน 234 คน ที่ได้รับการประเมินการได้ยิน ณ โรงพยาบาลศรีนครินทร์ในช่วงเดือนมิถุนายน พ.ศ. 2550 ถึงเดือนกันยายน พ.ศ. 2553 ข้อมูลทางการได้ยินจะถูกแสดงในเชิงพรรณนา

ผลการศึกษา: พบว่าผลตรวจการได้ยินครั้งแรกมีการได้ยินผิดปกติของหูข้างเดียวหรือหูทั้งสองข้างจำนวน 186 รายคิดเป็นร้อยละ 79.49 โดยพบการสูญเสียการได้ยินแบบการนำเสียงเสียทั้ง 2 ข้างมากที่สุด คิดเป็นร้อยละ 88.71 การสูญเสียการได้ยินแบบการนำเสียงเสียข้างเดียวจำนวน 16 คน คิดเป็นร้อยละ 8.6 พบการสูญเสียการได้ยินระดับปานกลางจำนวน 181 หู คิดเป็นร้อยละ 50.84 ผลการตรวจสมรรถภาพฟูชินกลางพบตามที่คาด ชนิด B พบจำนวน 335 หู คิดเป็นร้อยละ 72.67 และพบว่าข้างหูที่สูญเสียมีความสัมพันธ์กับลักษณะทางการได้ยิน

สรุป: พบว่าอุบัติการณ์ของการสูญเสียการได้ยินในผู้ป่วยปากแหว่งแพะนิวิจัยในการศึกษานี้อยู่ในระดับสูง ต่างกับการประเมินการได้ยินโดยทั่วไปในช่วงที่สูญเสียที่ส่งผลโดยเฉพาะอย่างยิ่งในกลุ่มเด็ก วางแผนการศึกษาอุบัติการณ์ของการสูญเสียการได้ยินในเด็กปากแหว่งแพะนิวิจัยมากขึ้น และหลักค้นพบเป็นนโยบายสุขภาพแห่งชาติในการเฝ้าระวังและป้องกันการระบาดของการสูญเสียการได้ยินในเด็กกลุ่มนี้