A Comparison of Cervical Vertebral Maturation Assessment of Skeletal Growth Stages with Chronological Age in Thai between Cleft Lip and Palate and Non-Cleft Patients

Poonsak Pisek DDS, MSc, FRCDT*, Keith Godfrey AM, MDS, DR. Dent*, Montian Manosudprasit DDS, MDS, FRCD*, Tasanee Wangsrimongkol DDS, MS, PhD*, Pornnapha Leelasinjaroen DDS*

* Department of Orthodontics, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand

Objective: (1) To search for any difference in chronological age related to stages of the cervical vertebral maturation index stages (CVMIs) comparing groups of cleft lip and palate (CLP) and non-cleft (non-CLP) subjects; (2) To investigate the relationship between chronological age and CVMIs in both groups of subjects.

Material and Method: Cervical vertebrae C2, C3, C4 were assessed on 1,549 cephalometric films (503 CLP films, 1,046 non-CLP films of subjects aged 5 to 18 years) using Hassel and Farman’s method.

Results: T-tests showed mean chronological ages of CVMIs 2, 3 and 6 were different at p = 0.001, 0.024 and 0.016, respectively. CVMIs 1, 4 and 5 showed no significant differences. The CLP group achieved each CVMI score one year ahead of the non-CLP group, except for CVMI 4. Spearman’s rank order correlations were r = 0.80 (95% CI: 0.76-0.83) for CLP, and 0.77 (95% CI: 0.74-0.79) for non-CLP.

Conclusion: CLP subjects tended to have a slightly advanced growth compared with non-CLP subjects. A high correlation coefficient was found between chronological age and cervical vertebral skeletal maturation.

Keywords: Hassel and Farman’s method, Cervical vertebral maturation, CVMI, Chronological age, Cleft lip and palate

All types of non-syndromic cleft lip and palate make up one of the most common congenital anomalies. The incidence of cleft lip and/or palate at Maharatnakorn Ratcashima Hospital in Northeastern Thailand was reported to be 1.4 in 1,000 live-births (1) and incidence of births with cleft lip and palate at Srinagarind Hospital in Khon Kaen was 1.1 in 1,000 live-births (2). One of the problems with which this group of patients is often confronted is deficiency of maxillary growth, producing skeletal Class III pattern and causing facial esthetic problems. Thus, the investigation to determine the timing of facial growth in cleft lip and cleft palate (CLP) children is crucial because the type of correction provided will be different according to the skeletal age of patient, such as dentofacial orthopedics applicable during adolescent growth, and orthodontics with orthognathic surgery deferred until after adolescent growth is completed.

There have been many maturity indicators to identify stages of growth. These indicators include chronological age, stage of dental development, height and weight changes with age, sexual maturation characteristics, and skeletal bone age determination using hand-wrist radiographs (HWR). Although use of HWR has been considered as the best indicator for assessment of maturity stage (3-5), they have disadvantages including extra radiation exposure of the patient, complexity of landmark identification and cost. Recently, assessment of cervical vertebrae in lateral cephalometric film, part of routine orthodontic diagnostics, has been introduced as an alternative to the HWR because good correlation has been found comparing these two assessment methods applied to different populations (3,6-8). Images of the first five cervical vertebrae provide the opportunity for simultaneous assessment of the skeletal maturation determined according to the cervical maturation stage.
(CVMI)\(^6\), therefore removing added radiation risks and cost associated with the use of the HWR. The cervical maturation index (CVMI) was introduced by Lamparski\(^6\) who developed a series of standards for the developmental stages of cervical vertebrae C2-C6 in male and female. O’Reilly and Yanniello\(^8\) evaluated the relationship between maturation of the cervical vertebrae and mandibular growth maturation. Hellsing\(^11\) evaluated cervical vertebral growth in a sample of 8-, 11-, and 15-year-old children. She found that the cervical vertebrae show correlations in their dimensional changes (height and length increments) with statural height at different ages. In 1995, Hassel and Farman\(^6\) analyzed the CVMI stage standards developed by Lamparski, and evaluated only the second, third and fourth cervical vertebrae. They matched the hand-wrist radiographs relating the 11 stages of skeletal maturation indicators of Fishman\(^12\) with six stages of cervical vertebral maturation (Table 1 and Fig. 1)\(^6\). Franchi et al and Baccetti et al\(^13,14\) reported that the CVMI method can be used as a biological indicator both for mandibular and for somatic maturation. Chen et al\(^15\) developed formulae using regression analysis to predict mandibular length increment by identifying the stage of cervical vertebrae maturation.

Currently, there is controversy about whether cleft lip and cleft palate children have different rates of growth achievement from normal people. Some studies have reported that growth and development of cleft lip and cleft palate patients is normal\(^16-19\), whereas other studies have reported that they may have risk of growth problems\(^20,21\), or tend to have gender and age-related delay of growth\(^22,23\). Although there have been numerous published reports about growth and development of CLP patients, only three

Table 1. Six stages in evaluation of cervical vertebrae maturation indicator according to Hassel and Farman\(^6\)

<table>
<thead>
<tr>
<th>CVMI Stages</th>
<th>Characteristic of maturation changes on cervical vertebrae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiation</td>
<td>Very significant amount of adolescent growth expected C2, C3, and C4 inferior vertebral body borders are flat Superior vertebral borders are tapered from posterior to anterior</td>
</tr>
<tr>
<td>Acceleration</td>
<td>Significant amount of adolescent growth expected Concavities developing in lower borders of C2 and C3 Lower border of C4 vertebral body is flat C3 and C4 are more rectangular in shape</td>
</tr>
<tr>
<td>Transition</td>
<td>Moderate amount of adolescent growth expected Distinct concavities in lower borders of C2 and C3 C4 developing concavity in lower border of body C3 and C4 are rectangular in shape</td>
</tr>
<tr>
<td>Deceleration</td>
<td>Small amount of adolescent growth expected Distinct concavities in lower borders of C2, C3 and C4 C3 and C4 are nearly square in shape</td>
</tr>
<tr>
<td>Maturation</td>
<td>Insignificant amount of adolescent growth expected Accented concavities of inferior vertebral body borders of C2, C3, C4 C3 and C4 are square in shape</td>
</tr>
<tr>
<td>Completion</td>
<td>Adolescent growth is completed Deep concavities are present for inferior vertebral body borders of C2, C3 and C4 C3 and C4 heights are greater than widths</td>
</tr>
</tbody>
</table>
reports on the use of the CVM index applied to the study of skeletal growth of children with cleft lip and palate have been found. This present study attempts to determine whether the skeletal maturation of subjects with CLP is significantly delayed compared with unaffected subjects.

Material and Method

This retrospective cross-sectional study used all available lateral cephalometric radiographs of 1,549 subjects (503 CLP and 1,046 non-CLP) at the Orthodontic Department, Faculty of Dentistry, Khon Kaen University, Thailand. The subjects ranged in age from 5 to 18 years. The selection criteria included patients who lived in Northeastern Thailand, without systemic disease and serious illness, no previous trauma effecting craniofacial growth and development, no congenital and acquired malformations of the cervical vertebrae, no developmental abnormalities, and no hormonal disorders. Moreover, all radiographs were required to have good quality of sharpness, brightness, and contrast.

Each cephalometric film was traced at the vertebrae C2, C3, C4 by one tracer, using a 0.3 mm 3H pencil on acetate paper, using the Hassel and Farman method (Table 1, Fig. 1) to evaluate cervical vertebrae stages (CVMI 1 to CVMI 6) by identifying changes at inferior vertebral body border, and of body morphology. Chronological age in whole years for each subject was calculated by subtracting date of birth from date of radiograph. The differences of mean chronological age at each CVMI stage between CLP and non-CLP groups were the main outcomes of the present study.

Statistical analysis

Descriptive statistics were used for identifying the general characteristics of subjects such as date of birth, date of x-ray film, gender, cleft type. With each lateral cephalometric radiograph, patient’s name and hospital number were covered, and numbered in random order. Vertebrae tracings were evaluated by two assessors and repeated by each assessor with three weeks separation. Weighted Kappa test was used to evaluate agreement using STATA version 10 (STATA Corp, LP Station Tx).

Independent t-test was used for comparing mean chronological ages between both groups. The Spearman’s rank correlation was used to assess the relationship between chronological ages and CVMIs in both groups. All were reported with exact p-values and 95% confidence intervals (CIs). The present study was approved by the Khon Kaen University Ethic Committee (number HE552083).

Results

Intra- and inter-assessor reliability assessments of a sample of 30 subjects were very good. The weight kappa value was 0.952 and 0.957 for intra-assessor reliability, and 0.956 and 0.952 for inter-assessor reliability before and three weeks later, respectively.

The total of 1,549 films used consisted of 1,046 non-cleft case films of 357 males and 689 females and 503 cleft case films (of 231 males and 272 females). The number of films for different cervical bone stages classified as non-CLP and CLP cases are shown in Table 2. The major cleft type in the present study was unilateral CLP (65.01%). Bilateral CLP (22.27%) was the second, whereas cleft lip with or without cleft alveolus and cleft palate only were 8.75% and 3.98%, respectively.

The distribution of different chronological ages for different CVMI stages in CLP group and non-CLP group are shown in Fig. 2 and 3, respectively. The CLP group showed CVMI 1 was most frequent at 5 years whereas the non-CLP group was shared between 6 and 9 years. CVMI 2 was most frequent at 8 years for the CLP group but at 9 years of non-CLP group. CVMI

Table 2. Frequencies of non-cleft and cleft subjects for each maturation stage

<table>
<thead>
<tr>
<th>Stage of cervical bone maturation</th>
<th>Non-cleft cases n (%)</th>
<th>Cleft cases n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiation (CVMI1)</td>
<td>11 (1.05)</td>
<td>36 (7.16)</td>
</tr>
<tr>
<td>Acceleration (CVMI2)</td>
<td>62 (5.93)</td>
<td>87 (17.30)</td>
</tr>
<tr>
<td>Transition (CVMI3)</td>
<td>125 (11.95)</td>
<td>131 (26.04)</td>
</tr>
<tr>
<td>Deceleration (CVMI4)</td>
<td>228 (21.80)</td>
<td>141 (28.03)</td>
</tr>
<tr>
<td>Maturation (CVMI5)</td>
<td>341 (32.60)</td>
<td>77 (15.31)</td>
</tr>
<tr>
<td>Completion (CVMI6)</td>
<td>279 (26.67)</td>
<td>31 (6.16)</td>
</tr>
<tr>
<td>Total</td>
<td>1,046</td>
<td>503</td>
</tr>
</tbody>
</table>
3 and CVMI 4 were most frequent at 10 and 12 years, respectively, in both groups. CVMI 5 was most frequent at 14 years for the CLP group, whereas it was 15 years for the non-CLP group. CVMI 6 was most frequent at 15 and 17 years in the CLP group but at 17 years for the non-CLP group.

The results of independent t-tests comparing mean chronological ages between both groups and 95% CIs are shown in Table 3. Fig. 4 illustrates the percentage of films from the KKU sample that were ranked in the six stages of CVMI. The X-axis indicates CVMI stages 1 to 6, while the Y-axis shows chronological ages in each stage.

Comparative data indicates that there was no significant difference in chronological age between patients with and without cleft lip and palate patients at initiation phase (p = 0.225, 95% CIs -0.52-2.16), deceleration phase (p = 0.617, 95% CIs -0.49-0.29) and maturation phase (p = 0.142, 95% CIs -0.13-0.88). However, likely significant differences were noted when comparing the two subject groups at the acceleration phase (p = 0.001, 95% CIs 0.42-1.57), transition phase (p = 0.024, 95% CIs 0.07-0.95) and completion phase (p = 0.016, 95% CIs 0.13-1.28). Obviously, the cleft patients reached each stage of CVMI earlier than the non-cleft group with least difference at the deceleration phase.

The correlations between chronological age and CVMI stages in CLP and non-CLP patients are shown in Fig. 5, 6, respectively. Spearman’s rank order test showed high correlation between stage of CVMI and chronological age of cleft group (r = 0.797) and normal group (r = 0.767). There are correlations between

<table>
<thead>
<tr>
<th>Stage of cervical bone maturation</th>
<th>n</th>
<th>Mean age</th>
<th>SD</th>
<th>Mean diff</th>
<th>95% CIs</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiation 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-cleft</td>
<td>11</td>
<td>7.82</td>
<td>1.83</td>
<td>0.82</td>
<td>-0.52 to 2.16</td>
<td>0.025</td>
</tr>
<tr>
<td>Cleft</td>
<td>36</td>
<td>7.00</td>
<td>1.96</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acceleration 2</td>
<td></td>
<td></td>
<td></td>
<td>0.99</td>
<td>0.42 to 1.57</td>
<td>0.001</td>
</tr>
<tr>
<td>Non-cleft</td>
<td>62</td>
<td>8.90</td>
<td>1.66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cleft</td>
<td>87</td>
<td>7.91</td>
<td>1.83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transition 3</td>
<td></td>
<td></td>
<td></td>
<td>0.51</td>
<td>0.07 to 0.95</td>
<td>0.024</td>
</tr>
<tr>
<td>Non-cleft</td>
<td>125</td>
<td>10.43</td>
<td>1.72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cleft</td>
<td>131</td>
<td>9.92</td>
<td>1.85</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deceleration 4</td>
<td></td>
<td></td>
<td></td>
<td>-0.10</td>
<td>-0.49 to 0.29</td>
<td>0.617</td>
</tr>
<tr>
<td>Non-cleft</td>
<td>228</td>
<td>11.87</td>
<td>1.79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cleft</td>
<td>141</td>
<td>11.97</td>
<td>1.93</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maturation 5</td>
<td></td>
<td></td>
<td></td>
<td>0.38</td>
<td>-0.13 to 0.88</td>
<td>0.142</td>
</tr>
<tr>
<td>Non-cleft</td>
<td>341</td>
<td>15.08</td>
<td>1.98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cleft</td>
<td>77</td>
<td>14.70</td>
<td>2.19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Completion 6</td>
<td></td>
<td></td>
<td></td>
<td>0.71</td>
<td>0.13 to 1.28</td>
<td>0.016</td>
</tr>
<tr>
<td>Non-cleft</td>
<td>279</td>
<td>15.97</td>
<td>1.53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cleft</td>
<td>31</td>
<td>15.26</td>
<td>1.81</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig. 4 Mean chronological age (years) with 95% CIs in each stage. The non-cleft groups (purple bar) and the cleft group (grey bar) were compared for each stage, while the blue lines show 95% CIs (*significantly different at $\alpha = 0.05$).

Fig. 5 Correlations of each CVMI stage and chronological age in cleft group.

Fig. 6 Correlations of each CVMI stage and chronological age in non-CLP group.

Discussion

The numbers of lateral cephalometric radiographs at CVMIs 1, 2, 3 and 4 were larger in the CLP group than non-CLP group because CLP patients had been receiving treatment with comprehensive clinical records since an early age. In the non-CLP group, on the other hand, the numbers of subjects progressively increased from very few at 5 years to large numbers at 15 to 17 years (Fig. 2, 3).

Many researchers have reported that the CVM index is a reliable maturational indicator6,9,13,26 although others have reported poor reproducibility$^{27-29}$. In a systematic review of CVMI studies30, there were questions about the reliability of the CVMI method as a growth maturation index. Because of the need to identify the morphology of the vertebral body as accurately as possible, the CVMI stages for comparing chronological age of the two sample groups, tracings of vertebral bodies in lateral cephalometric were made. The high-reproducibility of results for the CVMI method in the present study may have resulted from making the tracing while simultaneously identifying a particular CVMI stage of cervical vertebral bodies instead of simply viewing their radiographic images, the latter being the more common method.

Previous cervical vertebrae assessment studies used subjects over various chronological age ranges. Most research studies had not included subjects younger than 8 years old$^{6,15,21,24,26,31-35}$ and covered the circumpubertal period. Roman et al3 and Uysal et al36 used a wider age range of 5 to 18 and 5 to 24 years old, respectively. Although these two studies reported high correlations of CVMI with HWR assessments, neither study had even distributions of sample sizes covering the total age ranges, the focus of the available subjects being with the first three CVMI stages. Wong et al35 claimed the CVMI method is not sensitive for detecting growth maturity apart from the growth spurt period. Too young or too old age ranges of subjects may reduce the ability of the CV method to detect precisely changes in skeletal maturity. The present study included subjects 5 to 18 years old in order to find basic data of all CVMI stages distributed over different chronological ages. From Fig. 2, 3, with
age range of 5 to 7 years, the authors found 11.3% of the CLP group and most of them were in CVMI 1 and 2 compared with only 1.9% for the non-CLP group. Moreover, the authors had difficulty in detecting initial chronological age for CVMI 1 because it may include any age before change to CVMI 2. The results of studying the samples indicate that the CVMI assessment may be mainly useful for identification from CVMI 3 onwards.

Although results of the present study showed that both CLP and non-CLP groups did not differ at initial, deceleration and maturation phases, subjects aged 5 to 7 years who showed CVMIs 1 and 2 were quite different for the same age range and CVMIs in non-CLP patients. This may be assumed to be before the start of increased growth rate, with some of the CLP group likely experiencing delayed growth. Most of CLP patients in this study seem to have slightly advanced growth because their chronological ages tended to be younger than those of the non-CLP group in each of these CVMI stages. However, it should be noted the mean age of the non-CLP group in the deceleration phases (CVMI 4) was higher than that of the CLP group, but the age difference was not significant. The mean chronological age in the non-CLP group was earlier than the CLP group only by 0.1 of a year in this stage.

The present study showed that generally CLP patients have no difference in ages of achievement of growth stages compared with non-CLP patients. This is in agreement with Jaruratanasirikul et al.\(^\text{37}\) showed that non-syndromic CLP patient have physical growth in weight, height and head circumference matching the general population. However, they found 4.5% of non-syndromic CLP patient as young as 2 years of age had delayed development when compared with Thai reference data. Prahl-Andersen\(^\text{38}\) reported that an advancement in skeletal maturity was greater in females with clefts than in females without clefts, while males with clefts did not show a remarkable difference in skeletal maturity compared with unaffected males. Bowers et al.\(^\text{22}\) reported that males with bilateral CLP had skeletal age delay from unaffected children whereas girls with unilateral CLP did not show skeletal age delay using serial hand and wrist radiographs. Their study showed that, in most results comparing chronological age, a CLP group achieved skeletal age stages earlier than a non-CLP group by less than one year. Krogman\(^\text{39}\) reported that cleft children who received cleft lip/palate surgery can catch-up normal growth, both hard and soft tissue, by the age of six years.

Menius et al.\(^\text{40}\) showed 56% of cleft palate with or without associated of cleft lip subjects had younger skeletal ages than the age standards for normal subjects using HWR assessment. However, their study group was limited to 48 subjects, which made for inconclusive results. Jensen et al.\(^\text{41}\) showed boys with CLP had retarded skeletal maturity and concluded that early feeding problems, infections of the upper respiratory airway and surgical procedure resulted in delayed growth. Sun and Li’s studies\(^\text{21,24}\) showed CLP patients had risk of delayed growth when compared with a control group. They suggested stress reaction to surgical procedures may result in CLP’s growth problems. Moreover, CVMI method seems to be useful in their subjects because CVMIs 1 and 2 can be detected for most of them in the 8 to 11 years age group. Conversely, the present study, especially for the non-CLP group at CVMI 3 had the largest proportion at 8 to 9 years old with CVMI 1 rarely found in this age range. The conflicting findings reported may be attributed to racial variations, local environmental conditions, and research methodology associated with the sample size and sample distribution, type of clefts, sex and the variety of growth indicators.

The present study showed that chronological age has high positive relationships with skeletal development. The correlation with “r” values of 0.80 and 0.77 for CLP and non-CLP patients, respectively, agreeing with previous studies\(^\text{33,36,42,43}\). However, the chronological age is not reliable for assessment of growth maturation\(^\text{12,32,44}\).

To enhance or restrict the maxilla growth may be effective in the prepubertal stages or before the peak of mandibular growth, whereas with mandibular growth, the greater magnitude at circumpubertal period, especially after the peak of growth spurt\(^\text{45-49}\). CLP children often have skeletal Class III due to maxillary deficiency with or without mandible prognathism.

Hassel and Farman\(^\text{6}\) assessed skeletal maturity using cervical vertebrae compared with the SMI for hand-wrist radiographs developed by Fishman\(^\text{12}\). They concluded from this comparison that the proper treatment time for growth modification in the maxilla should be initiated during CVMIs 1, 2 (Fishman’s SMI 1, 2, 3 and SMI 4, 5 and sustained through CVMIs 3, 4 (SMIs 6, 7 and SMIs 8, 9) for maximum correction. From the present study, CVMI assessment may be useful to evaluate individual growth status in circumpubertal period. It is doubtful whether younger patients who are in CVMIs 1 and 2 would
have onset of growth spurt during 5 to 7 years old.

In clinical practice, attempting to find accurate growth predictors of craniofacial changes may be less useful than expected. Xi and Roche(50) observed that skeletal age assessment from one part of the skeleton may be misleading if applied to another unrelated part. The accurate determining of the timing of jaw growth spurt would best be assessed by measuring the jaw changes themselves but would be difficult if not impossible to carry out without frequent cephalometric radiographs. Santiago et al(30) concluded that there was low level of evidence supporting CVMI methods that can be applied to skeletal maturity assessment. They stressed the skeletal assessment should not be used by assessing cervical vertebrae maturation alone. Moreover, Ball et al(51) stated that CVMI should be a supplemental method for evaluating growth because it could not accurately specify prepubertal mandibular growth minimum, nor the onset of any mandibular growth spurt. However, an interesting point of observing bone ossification may be to provide the final cut-off point of adolescent growth. In the present study both groups of patients achieved the end of growth (completion stage or CVMI 6) within 18 years of age. Greulich and Pyle(52) indicate the final adult height is achieved at 17 years old. Lewis and Roche(53) studied serial cephalometric radiographs. They concluded that after 18 years old, small, total increment growth change in cranial base and mandible were shown.

As mentioned above, CVMI assessment may have some limitations. However, the CVMI may be useful to confirm cases waiting the cessation of mandibular growth such as with mandibular set-back surgery that should be delayed as long as after the completion stage of growth and to confirm that growth modification cannot help. Although the present study showed CLP patients tend to show a slightly advanced growth spurt, it is not possible from a single radiograph that reveals a particular stage of bone ossification to determine whether the growth is in an early or late phase of its development(54).

Limitation of this study
1. The sample size in this study requires a large group of subjects especially initial and acceleration phases. Larger sample size of each group would provide more precise results.
2. The absence of longitudinal data and using simple growth accomplishment at one point of time may make application of these results of only moderate value, although they compare favorably with other similar studies.
3. The present study did not separate male and female groups for controlling confounding factors because some CVMIs had small sample sizes.
4. The usefulness of including subjects younger than 8 or 9 years of age is questionable.

Conclusion
The present study showed that CLP subjects tended to have slightly advanced growth compared with non-CLP subjects. A high correlation coefficient was found between chronological age and cervical vertebral skeletal maturation. However, the use of skeletal age would be more accurate and more clinically beneficial than simply relying on chronological timing of growth stages. Applying the cervical vertebral maturation index (CVMI) method to estimate growth status should be used as a supplemental method. It is only of moderate value in clinical practice to rely on evaluation of vertebral growth from a single lateral cephalometric radiograph for predicting individual growth. Further study would be to use a more powerful research design such as case-control study or longitudinal study, separate sexes, and focus on age range over the circumpubertal period that could provide valuable information to help make decisions on the timing of orthodontic treatment.

Acknowledgement
The authors wish to thank the Tawanchai Foundation for Cleft Lip-Palate and Craniofacial Deformities and the Center of Cleft Lip-Cleft Palate and Craniofacial Deformities, Khon Kaen University, in association with the Tawanchai Project.

Potential conflicts of interest
None.

References
30. Santiago RC, Miranda Costa LF, Vitral RW, Fraga MR, Bolognese AM, Maia LC. Cervical vertebral maturation as a biologic indicator of skeletal...
การศึกษาเปรียบเทียบอุปภัยในระหว่างผู้ป่วยปากแอลเวงแผนที่และคนปกติในประเทศไทยโดยใช้
มาตรฐานค้นคองในการประเมิน

พื้นที่ต้องการ: ศึกษาดูความแตกต่างของอุปภัยในระหว่างผู้ป่วยปากแอลเวงแผนที่และคนปกติ โดยใช้ระดับ
การเจริญเติบโตของกระดูกค้นคองในการประเมิน (2) เพื่อทดสอบความสัมพันธ์ระหว่างอุปภัยที่ และระดับการเจริญเติบโต
ของกระดูกค้นคองในผู้ป่วยทั้งสองกลุ่ม

วัสดุและวิธีการ: วิเคราะห์กระดูกค้นคองระดับสูง สามและสี่ ในภาษาจีนได้ผลศึกษาด้านทางทั้งหมด 1,549 ภาพ
จำแนกเป็นกลุ่มผู้ป่วยปากแอลเวงแผนที่ 503 ภาพ และคนปกติ 1,046 ภาพ ออก 5 งวด 18 ปี โดยใช้วิธีอิสระละเอียด
แอคทิฟเรซิ่น

ผลการศึกษา: ค่าเฉลี่ยอุปภัยในมีความแตกต่างในการเจริญกระดูกค้นคองในการเจริญเติบโตระยะที่สอง ระยะสาม
และระยะที่หก อย่างมีนัยสำคัญ (p = 0.001, 0.024 และ 0.016 ตามลำดับ) ในขณะที่การเจริญเติบโต ในระยะที่ห้า
ระยะที่หก และระยะที่หก ไม่มีความแตกต่างอย่างมีนัยสำคัญ กลุ่มผู้ป่วยปากแอลเวงแผนที่หรือการเจริญเติบโต
กระดูกค้นคองไม่มีเกินหนึ่งปี อย่างการเจริญเติบโตกระดูกค้นคองในระยะที่หกคนปกติ มีค่าอยู่ในอุปภัยมากกว่า
ค่าเฉลี่ยอุปภัยสัมพันธ์เชิงปริมาณ ระหว่างอุปภัยที่และกระดูกค้นคองในกลุ่มผู้ป่วยปากแอลเวงแผนที่ (r = 0.80
(95% CI: 0.76-0.83), ในคนปกติ r = 0.77 (95% CI: 0.74-0.79)

สรุป: ผู้ป่วยปากแอลเวงแผนที่มีแนวโน้มการเจริญเติบโตมากกว่าเล็กน้อยเมื่อเทียบกับการเจริญเติบโตของคนปกติและมีความ
สัมพันธ์กับอุปภัยที่และกระดูกค้นคองอยู่ในเกณฑ์